Branched-Chain Amino Acids: Metabolism, Physiological Function, and Application Application of Branched-Chain Amino Acids in Human Pathological States: Renal Failure
نویسندگان
چکیده
During renal failure, abnormalities of BCAA and branched-chain keto acid (BCKA) metabolism are due to both the lack of renal contribution to amino acid metabolism and the impact of renal failure and acidosis on whole-body nitrogen metabolism. Abnormal BCAA and BCKA metabolism result in BCAA depletion as reflected by low plasma BCAAs and cellular valine. BCAA metabolic disturbances can alter tissue activities, particularly brain function, and nutritional status. In dialysis patients, BCAA oral supplementation can induce an improvement of appetite and nutritional status. During chronic renal failure, the aims of nutritional interventions are to minimize uremic toxicity, avoid malnutrition and delay progression of kidney disease. BCAA and BCKA supplements have been proposed to decrease further protein intake while maintaining satisfactory nutritional status. In this setting, BCAAs or BCKAs have not been administrated solely but in association with other essential AA or keto analogs. Therefore, the proper effects of BCAAs and/or BCKAs have not been studied separately. Protein restriction together with keto acids and/or essential AAs has been reported to improve insulin sensitivity and hyperparathyroidism and to be compatible with a preservation of nutritional status. Nonetheless, a careful monitoring of protein-calorie intake and nutritional status is needed. A recent meta-analysis concluded that reducing protein intake in patients with chronic renal failure reduces the occurrence of renal death by ;40% as compared with larger or unrestricted protein intake. The additional effect of essential amino acids and keto acids on retardation of progression of renal failure has not been demonstrated. J. Nutr. 136: 299S–307S, 2006.
منابع مشابه
Effects of branched-chain amino acid deficiency in diets on growth factors, pancreatic enzymes activity and whole body proximate of Sobaity seabream juvenile (Sparidentex hasta)
On the current study the effects of reducing branched-chain amino acids (BCAA) in diets of Sobaity sea bream in a constant level (40%) on growth and nutritional indices, pancreatic enzymes activity, whole body chemical proximate and amino acids, was assessed. This experiment was conducted in Marine Fish Research Station of Imam Khomeini harbor during July and August of 2014. For these purposes,...
متن کاملApplication of branched-chain amino acids in human pathological states: renal failure.
During renal failure, abnormalities of BCAA and branched-chain keto acid (BCKA) metabolism are due to both the lack of renal contribution to amino acid metabolism and the impact of renal failure and acidosis on whole-body nitrogen metabolism. Abnormal BCAA and BCKA metabolism result in BCAA depletion as reflected by low plasma BCAAs and cellular valine. BCAA metabolic disturbances can alter tis...
متن کاملBranched-Chain Amino Acids: Metabolism, Physiological Function, and Application Branched-Chain Amino Acids: Enzyme and Substrate Regulation
The three branched-chain amino acids (BCAAs) are the most hydrophobic of the amino acids and play crucial roles in determining the structures of globular proteins as well as the interaction of the transmembrane domains of membranous proteins with phospholipid bilayers. However, the three BCAAs do not behave identically. In terms of protein secondary structure, valine and isoleucine exhibit a de...
متن کاملThe Effect Consumption of Pre-Exercise Branched Chain Amino Acids Consumption With Vitamin E Supplementation on Muscular Damage
Background& purpose: Today, among athletes, the use of amino acid supplements with the aim of reducing muscle injuries is more important than in the past. the aim of this study was to survey the effect of branched chain amino acids (BCAA) consumption before exhaustive exercise along with 1-month vitamin E supplementation on lactate dehydrogenase (LDH) and creatine kinase (CK) levels of active f...
متن کاملXenogeneic, extracorporeal liver perfusion in primates improves the ratio of branched-chain amino acids to aromatic amino acids (Fischer's ratio).
In fulminant hepatic failure (FHF), the development of hepatic encephalopathy is associated with grossly abnormal concentrations of plasma amino acids (PAA). Normalization of the ratio of branched-chain amino acids to aromatic amino acids (Fischer's ratio) correlates with clinical improvement. This study evaluated changes in PAA metabolism during 4 h of isolated, normothermic extracorporeal liv...
متن کامل